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The problem of calculating the bendlng stress in an or-
dinary straight beam is staticelly undetermined, since noth-
ing is known as yet regarding the distribution of the stress
over the cross section. This question can be definltely ex-—
plained only by the elastln deformation. In order to clear
away this uncertainty, the simple girder theory assumes that,
even after deformation, the sections perpendiculai to the
glrder axis remain flat. Thls hypothesis, which was first
arbitrarily made by Bernoulll, 1s confirmed to a certaln de-
gree, especially by the fact that the concluslons derived
from it agreed well with experience, partlcularly as regards
bodlies followling Hooke'!s law. In connectlon with thie law,
it follows that normal stresses are transmitted according to
the well-known rectilinear law in flat sections. Subsequently,
De St. Venant's strictly theoretlical lnvestigation proved
that the linear law necessarlly aspplies to bodies followlng
Hooke's law, provided the fibers parallel to the girder axls
exert no mutual transverse or tenslle stresses and no sheariﬁg

stresses transversely to the girder axis. These condltlons

whyeber die Mittragende Breite,® ,from the 1938 Yearbook of the
Wissenschaftliche Gesellschait £Ar Luftfahrt, pp. 100-104.
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are fulfilled accurately enough for glrders, the eross section
of which does not materially differ from a rectangle, and
hence, for such girders, there 1ls o good agreement between
experience and the single glrder theory.

If Bernoulli's hypothesis were applied to glrders, the
stress elong the wldth of the flange would be constant. This,
however, 1g far from belng the case for girders. with wide
flanges, where the stress decreasecs toward the outer edge of
the girder flange (Fig. 1). With opproximation, such & girder
can be considered os o disk stressed at the junction point of
web and flange by the deformatlon of the web fibors. It is
obvious that the flbers near the edge are less affected than
those near the junction point. '

In practice the actual maximum stress is greater than
the stress determined by the simple girder theory, which over-
estimates the bearing or supporting capeacity of the flange.
The fact is that the cesumptions of the simple girder theory
no longer hold true, since normal transverse and shearing
stresses are engendered 1in the plane of the flange.

We can assume the true width of the flange b to be re-
placed by a smaller ﬁidth A, =along which the stress 1ls con-
sldered constant and equal to its value ot the extreme web
flber. The magnitude of A\ should be so determined that the
calculated bending strength of the aforesald girder w;th a
flange width A would equal the bending strength of the actual
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girder with a width b. Hence it can be sald that only the

" width A possesses full bearing capacity. The problem of de-
termining the "fully supporting" width 1s frequently encoun-
tered in practlce, e.g., in bulkheads, tank wglls, stiffened
cellings and, furthermore, in alrplane constructlon, ete.
(Figs. 2 and 3).

The importance of this problem had long been recognized
and attempts were made to overcome the difficulties by rule-
of—thumb formulas which, however, lacked accuracy and general
applicability.

In his work (contalned in the "Beltrage zur technlschen
Mechanlk und technischen Physik," published by Springer in
1924) Von Karman indicated a method for the determination of
the actual stress distribution or of the supporting width.

In this work the method whlch can be used for any girder ar-
rangement and any load distribution was developed for a con-
tinuous glrder resting on an infinlte number of equidistant
gupports (spacing of supports = 2 1), the same load being
symmetrically applied in the center of each span. The bend-
ing moment 1s represented by a trigonometricel serles which,

on account of the symméetrical load, has the form:

M=M; + M cos 1%5 + M, cos 80X 4+ ..., (1)
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The flange of unlform thlckness 6§ 1s considered as a
disk, and 1ts bending strength as a plate 1s neglected. The
stresses ln the flat disk are indicated by the well-known
Alry stress functlion ¥F. This function rmust satisfy the mar-
ginal conditions. For x=0 and x =31 (Fig. 1):

a) The angular variation in the horizontal plane = O.

b) The displacement 1n the x direction = O (for reasons
of symmetry).

Moreover, the displaoement in the y direoction is assumed
to disappear along y = 0. As a matter of fact, this does
not actually hold true, on account of the transverse contrao—
tion at the junctlon point, but it will be shown subsequently
that thls spproximation agrees well with the test results.

For a finlte flange width, we must also have, at the
free edge y = Db,

]
5y=0 and T =0

These boundary conditlons can be expressed by the stress
function F. Consequently, a function F 1is sought, satise-
fying the 1lndicated boundafy conditions, as well as the dif-
ferential equation of the plane disk A AF = O. Besides,
the function must be so general as to cover any stress dis-
tribution which may be set up in the disk by shearing stresses
acting- symmetrically to the center of the span at the junction
point, but otherwise arbitrarily distributed about this point.

.*In this connectlon, attention is celled to a dissertation by
¥Mr. Metzer, which 18 to appear shortly and will contaln, in
connection with Von Xarman's work, the development of a few
practically important cases.
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This last condltion is satiefied by the expression-

- - ,
- omx
F=_Z Zn (y) cos =5 (3)

which, on account of the cosline member, is symmetrical when
x = 1. When this expression is introduced in the equation
AAF =0, adeterminative equation of f, (y) 1s obtalned.

Its solutlon reads as follows:

-any

-y Q;
Gny+ By e o + Opn ¥y e ny+ Dnpy e

fn(y)=An e (3)

when GQp = Bfl

Thus the above expresslon of the Airy stress functiomn

changes to

® Cny ~-any any -
F= S [Ane ~+Bpe "+0pve "+Dy7ve ™ooslanx) (4)
n=1i

Q;
For an infinite plate width, the members in e ™ van—

ish, if all the stresses are of flnlte magnitude for y =o .
Function F 1is glven by equation (4) for a finite p;gie width.
' By means of the marginal conditions the constant values B,
Cpn, and Dp can be expressed by Ap at the edées y-=0 and
y = b, 80 that the stress functlon adapted to the marginal

conditions aésumes the following form:

F= 2 An @n(y) cos BIX : 5
4o on(y) oos BfE (5)

where 9Pn(y) 1s a given funoction of vy.
The flange can be considered as a constant elastic sup-

port of the web. Under these conditions the webd would be
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consldered as a statlcally undetermined girder, in which the
"oonstent supporting actlon is exerted by the shearing stresses
gt the junotlon point. Henoce the sheoaring stresses must be
considered as statically undetermined values. When they are
agein replaced by the stress function F (equation 5), the
coefficlents Ap are to be considered as statlcally undeter-
mined.

For a gilven loadlng, the coefficients 1i,, ¥,, etc.,
of the bendlng moment developed in a trigonometrical series
are known, whereas M, 1s undetermined and has therefore to
be considered as the staticelly undetermined valuse.

Apn ond Ly are determlned according to the principle of
the least work of deformation which involves the work done by
the flanges and webs. The Work of deformatlion l1s expressed
by the stresses, and the stress function F 1s introduced,
whereupon, after satisfying the conditions of equilibrium,
the totel work of deformation appears s a functlon of the
staticelly undetermined quantities iy and Apn. These quantil-
tlies must be given such values as to reduce the total work
of deformation to a minimum. Hence the partial differentlal
quotients derived from the statically undetermined quantities

Mo and An must be equal to zero, whence Mo = Q0. Further-
more, We obtaln a determinative equation for 4A,, which de-
pends on the parameter n and also on Polsson's constant of

the material m, on constructional data and on the loading
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Mpn. Mp oan be determined for a given loading, whence An 1s

.. 1llkewlse given. The stresses in the flanges are defined by

the second differentlal coefficlents of the stress function
F, and thus all the data required for the determination of
the stresses 1n the contlinuous girder are kmown.

Let ﬁs consider more closely the case of an ldentical
"point load"™ P in the center of each span. The corresponding
moment dlagrem is shown in Figure 4.

The moment can be represented as a straight periodic
function of the coordinate x with a period of 3l. Tpe co-
efflcients Mp of the linear funotlon developed in a pure
coslne series caen be easlly calculated for the moment. We
obfain

M, = 3Pl 1

Figure 4.- The central part 1 of the girder with a span
21 has the same moment diagram as a girder on free supports
of a span 1 with free ends. Owing to this fact, one may be
led to believe that the supporting width and the stress dia-
gram calculated for the central girder portion resting on an
infinote number of supports (épan 3l) directly apply to a
glrder with free ends, provided the span 1s 1. This is like-

- 'wise confirmed by Metzer, who indicates the relation for the

bearling or supporting width of both plate girders and states
that the aforesald girder wlth free ends and a span 1 is
identical with the central portion of the continuous girder
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under conslderatlon. Of course I should not fail to mentlon
that, in.the. investigation of the girder with thé free ends,
not all the marginal conditions werse strictly satisfied.
. Thus, for instance, the question was simplified by passing
over the conditions according to wWhich the shearing stress of
the flanges would vanish at the free ends. On the other hand,
1t was shown by a simple example that the influences of the
residual shearing stresses 1s small at the flange tips of the
portion of a length 1 out out of the contlnuous girder. Al-
together-the central girder portion between the moment zero
polnts of the contlnuous glrder can be used for the caloula~
tlon of the stress dlagram or of the bearling wldth of a girder
placed on two supports and having free ends. Owing to the
symnetry the calculation can be confined to the portion be-
tween x =0 and x = %. -
Stress and elongation measurements were then carried out
for a steel-flange girder resting on two supports (span 1).
The calculation was made according to the aforesaid method
for a 'continuous glrder having the same sectlon but twlce the
span (¥r. Miller's dissertation, which will soon be published).
I shall now show you a fow figures in which the caiculaxed
and the measured values of Ex E are compared (Figs. 5-8).
fheréuié-avgood agreemeﬁﬁ thioughout between tﬁe calcuiated
and the mgaeured Ex E values of the flanges. The linear

stress distribution in the web is likewlse conflirmed by the
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test, This fact was assumed for the theoretical conslderatilon.

" A certeln discrepancy 1s found in the section above the point

of application of the load, but it is probably caused by the
local force transmission (external force). The relatively
greatest deflection is near the Jjunction point, which may be
explalned as follows.

According to the theory (Fig. 9), there is a small dis-
continulty in the stress diagram near the junction point due
to the fact that a free transverse contractlon was ossumed for
the web, the transverse stress being equal to zero, which,
however, does not hold good for the plate. The difference be-
tween the stress oxg of the flange and the stress Oxg of
the web at the junction point is approximotely 6%. This
slight lnaccuracy had already been designated by Von XKarman
a8 a neglliglble defect.

I shall now show you some other results computed from
Mr. Metzer's dissertation (Figs. 10-~14) "Discusslon of the
Results."

It appears ' from these results that, beginnlng witp a cer-
taln value of %, the bearing width does not lncrease mater-
lally. It is therefore of no use to increase the flange width

. heyond this value, since there will be no further apprecilable
1pcrease in A. It will be shown subsequently that it 1s not
only useless to increase the flange width beyond a certain
value, but may even be detrimental.
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The results jJust shown refer to gilrders with stiff flanges.

..The. .condltions arising for very thin flexlble flanges cannot

be antlcipated. As shown 1n Figure 15, the flenge 1s then
bent not only in the longitudinal dlrection but also trans—
versely, whlch causes a deformatlon of the sectlon outline.

It may be noted that this deformation not only occurs for com-
presslon stresses of the flange which characterize buckling
phenomena, but that the deformatlons are much greater when the
flange is subjected to tenslle stresses. For an appreclable
increase in these transverse deflections, the assumptions of
the consldered method will_no longer hold good. The qQuestion
of transverse deflectlon has not yet been sufficlently ex-
plained. Since it affeots the bearing width, it is well in
such cases to determine the carrying or supporting width ex-
perimentally.

Next come the stress and elongation measurements of web
and flange. However, one can imagine cases in which certain
reasons might render stress measurements impossible. This is
the case of very thin girders or coverings in which large
bulges or buckllings occur. We shall therefore attempt to de-
termine the bearing capaclty by another method.

For the same load the deflection fj; of the web wilthout
flange must obviously be greater than the actusl deflection
fg of the whole girder with flanges. Hence the difference

between the deflections fg - fg 18 a measure of the bearlng
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width. We again assume the actual girdér to be replaced by
an equlvdlent girder with a flange wilidth A, 8o that the
simple girder theory can be gpplied to it with the effective

moment of inertla Ig. A slmple consideration leads to

~[>

=0 9 1

where ¢ and ‘A, are constants glven by construotiomn.

(Ig = moment of inertia of web alone; Ig = effective moment
of inertia of whole girder, 1l = span.)

Furthermore, 1f we assume that the bearing width is ap-
proximately constant over the length of the girder, then

I f :
T% = fg' Thus we might measure fg and fg, whereby v be-

comes known and means sre afforded for calculat?ng %. This
‘method ought to 1nq10ate.the order of magnitude of the support-
ing width. I shall now show you the results of the measure-
ments which I made with duralumin I beams with thin riveted
flanges (Fig. 18) "Discusslon of the Results." The determi-
nation of the.magnitude of the bearing width, according to
* this"method, will be satisfactory in many cases.

We already know that the bearing width is generally var-
lable along the beam (Fig. 11). This can best be taken care
of by the following method.
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Let
mJe( =M
a 24
[+ il W
EJB(dxa/ 'y .
Hence,
(&
Je _'d x*4
Je (d? NAY
d x°4

2
We should therefore determine (S—L) (for s loading
X

2
of the web without flange) and (H} (the value for the
x
whole beam with flanges) at different points of the bean.
According to Figure 17,

4y =
i tang?nta

a2 ; - A tangento
d x Ax

Thus A tangenta can be determined by fixing two mirrors
to the web (Fig. 17) at a distance of A x. When A tangenta
is divided by the distanoce A x between the two mirrors, we
have |

A tengento _ 4%
Ax d‘ix'

%%,1: andﬂ% become known when the above value is determined
for the web alone and for the whole girder. ‘

This method of testing affords a means of determining
the bearlng width, as well as.the effeot of the transverse de-
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fleotion, even for strustures wlth very thin flanges whilch

-cannot- yet be oaloulated. This-metﬂod furthermore enables us

to determine the effeot of riveting and gluing (wood) on the
bearing width.

I hope to progeed with tests along this line, dealing
also with series of girders, and to report later regarding
the results.

In conclusion, I wish to refer to several other articles
(in addition to those by Von Karmen and Mr. Metzer), whioh
deal wlth the problem of the bearing or supporting width.

One 1s by Mr. Bortsoh in Der Bauingenieur of 1921, and con-
talns an attempt to determine the bearing width. A lecture

by Dr. Schnadel on "Stress Distrlbution in the Flanges of Thin-

Walled Box Girders" was published in the 1926 YeaxrPtook of the

Schiffbautechnische Gesellschaft (Soclety of Naval Architects).

Translation by W. L. Koporinds,
Paris O0ffice, National Advisory Committee
for Aeronautics.
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ol phe
Bf. = Beam field,B = single girder.

d = QOontlnuous glrder on
an infinlte number 8L
of supporte(span 31).

f = Free support,l.e.glrder resting
on 3 supports(span 1),the edges
remalning free.

gl.L. = Loading through uniformly

distributed load.

>

L

Fig.1l0Bf.4.
E.L. = Loadling through a point load in the center of the span.

.16

Figs.10,11,13,
13 & 14
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